Does rotational melting make molecular surfaces more slippery?1

ANDREA BENASSI, CARLO PIGNEDOLI, DANIELE PASSERONE, Swiss Federal Laboratories for Materials Science and Technology, EMPA, ANDREA VANOSSI, CNR-IOM Democritos and SISSA, Trieste, Italy, ERIO TOSATTI, SISSA, ICTP, and CNR-IOM Democritos, Trieste, Italy — Crystals made up of spherical, weakly interacting molecules generally exhibit a phase transition between a low temperature ordered phase and a plastic phase, where the rotational order is thermally lost. In C\textsubscript{60} fullerene, the transition takes place at T\textsubscript{r}=260K in bulk, initiating at a lower temperature at a (111)surface. We explore by MD simulations whether a slider should experience a change of friction on that surface in correspondence with the phase transition. Modeling the slider as a C\textsubscript{60} flake attached to a sliding tip, we obtain a response dependent on the orientation and the angular compliance of the flake. An orientation angle commensurate with the C\textsubscript{60} surface yields a large adhesion and friction, both dropping by only about 20% at the plastic transition. An incommensurate angle yields both adhesion and friction a factor 2 smaller and relatively unaffected by the transition. Finally, a sliding flake with an incommensurate angle but a compliant orientation offers the possibility of a very different sliding behavior, remaining incommensurate with very low adhesion/friction above T\textsubscript{r}, but jumping to a commensurate angle with high adhesion/friction below T\textsubscript{r}. This third possibility might have been realized in the AFM experiment by Liang et al.(PRL 2003).

1This work is partly sponsored by SNSF Project CRSII2 136287/1, and by ERC Grant N. 320796 MODPHYSFRICT

Andrea Benassi
Swiss Federal Laboratories for Materials Science and Technology, EMPA

Date submitted: 14 Nov 2013
Electronic form version 1.4