Abstract Submitted for the MAR14 Meeting of The American Physical Society

Molecular Dynamics of Poly(L-Lactic Acid) at around Glass Transition Temperature Elucidated by Solid-state NMR^1 WEI CHEN, TOSHIKAZU MIYOSHI, the University of Akron — Chain dynamics in so-called $\alpha_{\rm c}$ mobile crystals obey Arrhenius type behaviors at temperatures well above the glass transition temperature (T_g) and below the melting temperatures (T_m) , while segmental motions of amorphous components above $T_{\rm g}$ follows WLF behaviors. If polymer chains in the crystalline regions perform overall chain dynamics at temperature around $T_{\rm g}$, how does dynamic correlation time $\langle \tau_{\rm c} \rangle$ change as a function of temperature? PLLA possessing a relatively high $T_{\rm g} \approx 60$ °C will provide an opportunity to challenge such a general question in polymer dynamics. Here molecular dynamics of PLLA chain in homo- ($\alpha \alpha'$, and glassy states) and stereocomplex (SC) systems are investigated by Solid–State NMR. Results verify that the chains within crystalline region in α and SC begin molecular dynamics at temperatures well above $T_{\rm g}$ and temperature dependence of $\langle \tau_{\rm c} \rangle$ in both systems follows Arrhenius behavior. In the disordered α' phase, the molecular dynamics of the backbone continues even at temperatures below $\sim T_{\rm g}$ + 10 °C. The temperature dependence of $\langle \tau_c \rangle$ shows a non-Arrhenius behavior. The unique temperature dependence of molecular dynamics of PLLA in glassy state, disordered crystals, and stable crystals will be elucidated.

¹NSF (DMR-1105829) and a UA start-up fund.

Wei Chen the University of Akron

Date submitted: 14 Nov 2013

Electronic form version 1.4