Abstract Submitted for the MAR14 Meeting of The American Physical Society

Metal-insulator transition in $\operatorname{SrTi}_{1-x} V_x O_3$ thin films¹ MAN GU, STUART WOLF, JIWEI LU, University of Virginia — Epitaxial $\operatorname{SrTi}_{1-x} V_x O_3$ ($0 \le x \le 1$) thin films with thicknesses of ~ 16 nm were grown on (001)-oriented LSAT substrates using the pulsed electron-beam deposition technique. The transport study revealed a temperature driven metal-insulator transition (MIT) at 95 K for the film with x = 0.67. The films with higher vanadium concentration (x > 0.67) were metallic, and the electrical resistivity followed the T² law corresponding to a Fermi liquid system. In the insulating region of x < 0.67, the temperature dependence of electrical resistivity for the x = 0.5 and 0.33 films can be scaled with Mott's variable range hopping model. The possible mechanism behind the observed MIT might be associated the interplay between electron-electron interactions and disorder-induced localization. The Ti⁴⁺ ion substitution introduces Anderson-localized states as well as lattice distortions that result in a reduction in the effective 3d bandwidth W.

¹We gratefully acknowledge the financial support from the Army Research Office through MURI grant No. W911-NF-09-1-0398.

Man Gu University of Virginia

Date submitted: 14 Nov 2013

Electronic form version 1.4