Optical spin injection in GaAs nanowires\(^1\)

PAULO EDUARDO FARIA JUNIOR, Universidade de São Paulo, Brazil, GUILHERME MATOS SIPAHI, SUNY Buffalo / Universidade de São Paulo, Brazil, IGOR ZUTIC, SUNY Buffalo — Controlling quantum confinement in semiconductor nanowires (NWs) allow desirable spin-dependent properties and enable novel devices, such as spin-interconnects\(^1\), spin-lasers\(^2,3\) or spin-enhanced phonon lasers\(^4\). Typically, the key element in such applications is the presence of non-equilibrium spin population. Focusing on GaAs NWs of different cross-sectional areas, we analyze their carrier spin polarization based on k.p band structure calculations\(^5,6\). We show that shining circularly polarized light propagating along the NW axis provides a robust spin injection, reaching \(\sim 100\%\) and switchable by changing the incident photon energy. For optical spin injection in bulk GaAs near the \(\Gamma\)-point, we recover previously known results\(^7\).

\(^1\)FAPESP (No. 2011/19333-4 and No. 2012/05618-0), CNPq (No. 246549/2012-2), NSF-ECCS, DOE-BES and US ONR.

Paulo Eduardo Faria Junior
Universidade de São Paulo, Brazil

Date submitted: 14 Nov 2013