Numerical Renormalization-Group computation of nuclear magnetic relaxation rates1 KRISSIA ZAWADZKI2, LUIZ N. OLIVEIRA3, University of Sao Paulo, JOSÉ WILSON M. PINTO4, Universidade Federal Amazonas — We report an essentially exact numerical renormalization-group (NRG) computation of the temperature-dependent NMR rate $1/T_1$ of a probe at a distance R from a magnetic impurity in a metallic host. We split the metallic states into two subsets, A and B. The former comprises electrons a_k in s-wave states about the magnetic-impurity site. The coupling between the a_k band and the impurity is described by the Anderson Hamiltonian, diagonalizable by the NRG procedure. Each state b_k in the B subset is a linear combination of an s-wave state about the probe site with the degenerate a_k, constructed to be orthogonal to all the a_k's. The b_k band hence decouples from the impurity and is analytically treatable. We show that the relaxation rate has three components: (i) a constant associated with the b_k's; (ii) a T-dependent term associated with the a_k's, which decays in proportion to $1/(k_FR)^2$, where k_F is the Fermi momentum; and (iii) another T-dependent term due to the interference between the a_k's and the b_k's. The interference term shows Friedel oscillations whose amplitude, proportional to $1/k_FR$, can be mapped onto the universal function of T/T_K describing the Kondo resistivity. We compare our findings with results in the literature.

1Supported by the FAPESP and CNPq
2Instituto Fisica Sao Carlos
3Instituto Fisica Sao Carlos
4Departamento Fisica

Luiz Oliveira
University of Sao Paulo

Date submitted: 14 Nov 2013

Electronic form version 1.4