Optical spectroscopic analysis of \(\text{Sr}_2\text{RhO}_4 \) and comparison with \(\text{Sr}_2\text{RuO}_4 \)^1 KIM MORTIMER, NATHAN ARMSTRONG, JESSE HALL, THOMAS TIMUSK, McMaster Univ — \(\text{Sr}_2\text{RhO}_4 \) is a strongly correlated electron oxide, similar to the unconventional superconductor \(\text{Sr}_2\text{RuO}_4 \). Changing Ru to Rh destroys superconductivity and skews the crystal structure without eliminating \(T^2 \) resistivity [1,2]. Using optical floating zone furnace techniques we grew single crystals of \(\text{Sr}_2\text{RhO}_4 \). We then performed spectroscopic measurements of the material at frequencies ranging from 4 meV to 1.2 eV and temperatures from 12 K to 300 K. We compare these results with those from single crystals of \(\text{Sr}_2\text{RuO}_4 \), grown by the author at Kyoto University and displaying <10% 3K phase, which were measured concurrently with \(\text{Sr}_2\text{RhO}_4 \) on the same apparatus. The optical resistivity \(\rho(\omega,T) \) of both of these materials are then compared to the predictions of Landau-Fermi liquid theory – in particular, the ratio between the temperature dependence and frequency dependence of resistivity, which yields insight into electron scattering mechanisms. [3] 1. Hase & Nishihara, doi: 10.1143/JPSJ.65.3957 2. Nagai et al, doi: 10.1143/JPSJ.79.114719 3. Maslov & Chubukov, doi: 10.1103/PhysRevB.86.155137

^1Work done with the support of NSERC, BIEP from Kyoto University, and in collaboration with K. Nishimura, Dr. G. Eguchi, Dr. S. Yonezawa, & Dr. Y. Maeno of Kyoto University, & C. Marjerrison, Dr. A. Dabkowski and Dr. H. Dabkowska of McMaster University.

Kim Mortimer
McMaster Univ

Date submitted: 01 Jun 2021