Abstract Submitted for the MAR14 Meeting of The American Physical Society

All-electron GW quasiparticle band structures of group 14 nitride compounds¹ IEK-HENG CHU, Department of Physics and the Quantum Theory Project, University of Florida, Gainesville, Florida, USA, ANTON KOZHENIKOV, THOMAS SCHULTHESS, Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland, HAI-PING CHENG, Department of Physics and the Quantum Theory Project, University of Florida, Gainesville, Florida, USA — We have investigated the group 14 nitrides (M_3N_4) in both the spinel phase (with M=C, Si, Ge and Sn) and the beta phase (with M=Si, Ge and Sn) using density functional theory (DFT) with the local density approximation (LDA). The Kohn-Sham energies of these systems are first calculated within the framework of full-potential LAPW and then corrected using single-shot G_0W_0 calculations, which we have implemented in the Exciting-Plus code. Direct bands gap at the Γ point are found for all spinel-type nitrides. The calculated band gaps of Si_3N_4 , Ge_3N_4 and Sn_3N_4 agree with experiment. We also find that for all systems studied, our GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core 3d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications.

¹This work is supported by NSF/DMR-0804407 and DOE/BES-DE-FG02-02ER45995. Computations are performed using facilities at NERSC.

Iek-Heng Chu Dept of Physics and the Quantum Theory Project, University of Florida, Gainesville, Florida, USA

Date submitted: 14 Nov 2013

Electronic form version 1.4