Abstract Submitted for the MAR14 Meeting of The American Physical Society

MgB₂ thin films for SRF application TENG TAN, MATTHAEUS WOLAK, NARENDRA ACHARYA, KE CHEN, XIAOXING XI, Department of Physics, Temple University — Superconducting RF (SRF) cavities are usually fabricated from bulk niobium (Nb), a material which is thoroughly studied and approaching its limits. Magnesium diboride (MgB₂) has a higher T_c of 39 K, a lower residual resistivity of <0.1 $\mu\Omega$ cm (at 42 K), and a higher thermodynamic critical field H_c value comparing with Nb. These properties imply that a MgB₂-coated SRF cavity would work at a higher temperature with a lower energy dissipation. However, the lower critical field H_{c1} of MgB₂ is low and vortex dissipation above H_{c1} can lead to degradation of the quality factor and a low RF breakdown field. In this work, we report an enhancement of H_{c1} in both c-axis oriented epitaxial and polycrystalline MgB₂ thin films. The value of H_{c1} (5 K) was increased from 60 mT in a 300 nm-thick MgB₂ film to 180 mT when the MgB₂ layer thickness was 100 nm in both cases. The microwave properties of the MgB₂ films were characterized as well by using the dielectric resonator technique.

> Teng Tan Department of Physics, Temple University

Date submitted: 14 Nov 2013

Electronic form version 1.4