Zero-Magnetic-Field Phase-Decoherence Transition in Underdoped La$_{2-x}$Sr$_x$CuO$_4$1 PAUL BAITY, XIAOYAN SHI, ZHENZHONG SHI, DRA-
GANA POPOVIĆ, Dept. of Phys. & Natl. High Magnetic Field Lab., Florida State
Univ. — The two key prerequisites for superconductivity are electron pairing and
phase coherence of the pair wave-function. We present an electrical transport
study on underdoped La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) films ($x = 0.07$ and 0.08) that suggests that,
in zero magnetic field ($H = 0$), superconductivity is destroyed by thermal unbind-
ing of vortex-antivortex phase fluctuations at a temperature T_{BKT}. In particular,
current-voltage ($I - V$) curves follow a power law $V \propto I^{\alpha(T)}$ with $\alpha(T) \geq 3$ for
$T \leq T_{BKT}$. In addition, the contribution of the superconducting fluctuations to the
conductivity, $\Delta\sigma_{SCF}(T, H = 0)$, obtained by extrapolating the measured magnetores-
istance from the normal state at high enough H and T, increases monotonically
with decreasing T and diverges exponentially at T_{BKT}. These results suggest that
the $H = 0$ superconducting transition, where the Ohmic resistivity also vanishes, is
due to the loss of phase coherence and manifests itself as a Berezinskii-Kosterlitz-
Thouless transition. Our findings agree well with other experiments on LSCO with
higher doping.

1Supported by NSF DMR-0905843, DMR-1307075, NHMFL via NSF DMR-1157490,
and the State of Florida.

Paul Baity
Dept. of Phys. & Natl. High Magnetic Field Lab., Florida State Univ.

Date submitted: 14 Nov 2013 Electronic form version 1.4