Coupling ZnSe band spin states and 4H-SiC defect spin states across their interface

ANDREW L. YEATS, Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, ANTHONY RICHARDELLA, NITIN SAMARTH, Center for Nanoscale Science & Dept. of Physics, Penn State University, University Park, PA 16802, DAVID D. AWSCHALOM, Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637 — Point defects in silicon carbide (SiC) have emerged as a promising platform for quantum information processing and nanoscale sensing in a technologically-mature semiconductor. ZnSe is a promising candidate for semiconductor spintronic applications and has selection rules compatible with optical orientation of conduction electron spins. We combine pump-probe optical measurements with pulsed optically detected magnetic resonance (ODMR) sequences to investigate coupling between SiC defect spins and ZnSe conduction electron spins in ZnSe/4H-SiC heterostructures. Preparation of these structures by molecular beam epitaxy (MBE) and ion implantation is discussed in terms of interface optimization.

This work is supported by NSF, ONR and AFOSR.

Andrew Yeats
Institute for Molecular Engineering,
University of Chicago, Chicago IL 60637