Nodeless versus Nodal Scenarios of Possible Triplet Superconductivity in the Quasi-One-Dimensional Layered Conductor Li$_{0.9}$Mo$_6$O$_{17}$

OTAR SEPPER, ANDREI LEBED, University of Arizona — We solve a theoretical problem of the upper critical magnetic field, parallel to a conducting axis of a layered, quasi-one-dimensional (Q1D) superconductor. In particular, we consider two cases: a triplet superconducting order parameter with and without zeros on the Q1D Fermi surface. We demonstrate [1,2] that the orbital destructive effects can destroy the superconducting state with parallel magnetic fields much higher than the so-called Clogston-Chandrasekhar paramagnetic limit, and that the nodeless order parameter is in a better quantitative agreement with the recent experimental data [3]. Our results indicate strong evidence in favor of triplet superconducting pairing in the layered Q1D superconductor Li$_{0.9}$Mo$_6$O$_{17}$. This work was supported by the NSF under Grant DMR-1104512.

1This work was supported by the NSF under Grant DMR-1104512.