Abstract Submitted for the MAR14 Meeting of The American Physical Society

The Strain Derivatives of T_c in HgBa₂CuO_{4+ δ}: CuO₂ Plane Alone Is Not Enough SHIBING WANG, Stanford University, JIANBO ZHANG, South China University of Technology, XIAO-JIA CHEN, VIKTOR STRUZHKIN, Geophysical Laboratory, WOJCIECH TABIS, NEVEN BARISIC, MUN CHAN, CHELSEY DOROW, XUDONG ZHAO, MARTIN GREVEN, University of Minnesota, WENDY MAO, TED GEBALLE, Stanford University — The strain derivatives of T_c along the *a* and *c* axes have been determined for HgBa₂CuO_{4+ δ} (Hg1201), the simplest monolayer cuprate with the highest T_c of all monolayer cuprates ($T_c =$ 97 K at optimal doping). The underdoped compound with the initial T_c of 65 K has been studied as a function of pressure up to 20 GPa by magnetic susceptibility and X-ray diffraction (XRD). The observed linear increase in T_c with pressure is the same as previously been found for the optimally-doped compound. The above results have enabled the investigation of the origins of the significantly different T_c values of optimally doped Hg1201 and the well-studied compound $La_{2-x}Sr_xCuO_4$ (LSCO), the latter value of $T_c = 40$ K being only about 40% of the former. Hg1201 can have almost identical CuO_6 octahedra as LSCO if specifically strained. When the apical and in-plane CuO_2 distances are the same for the two compounds, a large discrepancy in their T_c remains. Differences in crystal structures and interactions involving the Hg-O charge reservoir layers of Hg1201 may be responsible for the different T_c values exhibited by the two compounds.

> Shibing Wang Stanford University

Date submitted: 14 Nov 2013

Electronic form version 1.4