Abstract Submitted for the MAR14 Meeting of The American Physical Society

Ferroelectric properties in $PbZrO_3/BaZrO_3$ superlattices: an *ab*initio study NABIL AL-AQTASH, AHMAD ALSAAD, RENAT SABIRIANOV, University of Nebraska at Omaha — Properties of tetragonal $(BaZrO_3)_1/(PbZrO_3)_n$ ferroelectric superlattices with n = 1-3 are calculated from first principles within the density functional theory. We show that an antiferroelectric $PbZrO_3$ displays ferroelectric behavior if deposited on a paraelectric substrate $(BaZrO_3)$. We have performed total energy calculations to investigate the origins of the ferroelectricity and analyze the polarization of $BaZrO_3/(PbZrO_3)_n$ superlattices as function of $PbZrO_3$ thickness. The densities of states (DOS) show that there is a strong hybridization between Zr/Pb and O atoms which play important role in stabilizing the ferroelectric ground state in the superlattices. Our calculations show that the polarization and tetragonality (c/a ratio) are reduced in the BaZrO₃/PbZrO₃ superlattices with respect to bulk tetragonal PbZrO₃. Moreover, the tetragonality and polarizations of superlattices increase with increasing the fraction of $PbZrO_3$ in the superlattices. The estimated polarization of the $(BaZrO_3)_1/(PbZrO_3)_1$ superlattice is $(38.46 \ \mu C/cm^2)$, while it is $(56.82 \ \mu C/cm^2)$ for the $(BaZrO_3)_1/(PbZrO_3)_3$ superlattice and $(74.22\mu C/cm^2)$ for bulk tetragonal PbZrO₃ These ferroelectric superlattices have good lattice matching with shape-memory NiMnIn Heusler alloys and could be very useful as a ferroelectric substrate to systems.

> Nabil Al-Aqtash University of Nebraska at Omaha

Date submitted: 14 Nov 2013

Electronic form version 1.4