Optical studies of ultrafast orbital dynamics of a single spin in diamond1 F.J. HEREMANS, D.J. CHRISTLE, C.G. YALE, D.D. AWSCHALOM, Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, L.C. BASSETT2, B.B. BUCKLEY, Center for Spintronics and Quantum Computation, University of California, Santa Barbara, CA 93106, G. BURKARD, Department of Physics, University of Konstanz, D-78457 Konstanz, Germany — The nitrogen-vacancy (NV) center in diamond shows great potential as an optically addressable solid-state spin for use in quantum information and metrology. At low temperature ($T < 10$ K) the NV center’s orbital-doublet, spin-triplet excited state becomes stable and optically coherent with the ground state. Here we use ultrafast optical pump-probe techniques coupled with optical polarization selection rules to investigate coherent orbital dynamics of the NV center’s excited state3. The experiments reveal dynamics which occur on nanosecond down to femtosecond timescales due to the interplay amongst these three orbital levels. These techniques enable all-optical control of the NV center’s spin state and could provide a probe to investigate orbital decoherence and phonon interactions in the NV center and other defect systems.

1This work is supported by AFOSR, and DARPA.
2Present address: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104