Abstract Submitted for the MAR14 Meeting of The American Physical Society

³¹P-NMR Study of the Effect of Pressure on the Magnetic Properties of the 2d Frustrated Square-Lattice Compound BaCdVO(PO₄)₂ at Low Temperatures¹ BEAS ROY, Ames Laboratory, Department of Physics and Astronomy, Iowa State University, RAMESH NATH, Indian Institute of Science Education and Research, Thiruvananthapuram, DAVID C. JOHNSTON, YUJI FU-RUKAWA, Ames Laboratory, Department of Physics and Astronomy, Iowa State University — BaCdVO(PO₄)₂ is a spin S = 1/2 frustrated square-lattice compound with a nearest-neighbor exchange coupling $J_1 = -3.62$ K and a next-nearestneighbor exchange coupling $J_2 = 3.18$ K yielding $|J_2/J_1| = 0.88$. A transition to an antiferromagnetic (AFM) ground state occurs below a temperature $T_{\rm N}=1.0~{\rm K}$ under ambient pressure p. Based on the J_2/J_1 ratio, the system is located close to the disordered ground state ("nematic state") regime of the phase diagram. We carried out $^{31}\text{P-NMR}$ measurements under high p, ranging from 0.74 GPa to 1.88 GPa, and at low temperatures T down to 100 mK, to investigate the effects of p on the magnetic properties of the system. With increasing p, the $T_{\rm N}$ does not change much, but the magnetization saturation field $H_{\rm S}$ is significantly suppressed from $H_{\rm S}=4.2~{\rm T}$ at ambient p to $H_{\rm S}=0.55~{\rm T}$ at $p=1.88~{\rm GPa}$. Our $^{31}{\rm P-NMR}$ spectra and spin-lattice relaxation rate $(1/T_1)$ data establish the first H-p-T phase diagram for this system.

¹Supported by USDOE under the Contract No. DE-AC02-07CH11358.

Beas Roy Ames Laboratory, Dept. of Phys. and Astro., Iowa State Univ.

Date submitted: 14 Nov 2013 Electronic form version 1.4