Commensurate-incommensurate solid transition in the $^4$He monolayer on a single $\gamma$-graphyne sheet

YONGKYUNG KWON, JEONGH-WAN AHN, School of Physics, KonKuk University, Korea — We have performed path-integral Monte Carlo calculations to study $^4$He adsorption on $\gamma$-graphyne. Assuming the $^4$He-substrate interaction described by a pairwise sum of empirical helium-carbon interatomic potentials, we find that unlike $\alpha$-graphyne [1], a single sheet of $\gamma$-graphyne is not permeable to $^4$He atoms despite its large surface area. One-dimensional density distribution shows layer-by-layer growth of $^4$He on $\gamma$-graphyne. Partially-filled $^4$He monolayers are found to exhibit different commensurate structures depending on the helium coverage; it shows a $C_{2/2}$ commensurate structure at the areal density of 0.0491 Å$^{-2}$, a $C_{3/2}$ structure at 0.0736 Å$^{-2}$, and a $C_{4/2}$ structure at 0.0982 Å$^{-2}$. After going through various domain structures, the $^4$He monolayer is completed at the areal density of 0.115 Å$^{-2}$ where $^4$He adatoms form an incommensurate triangular solid. Possible superfluid response of the $^4$He monolayer on $\gamma$-graphyne is now under investigation.