Abstract Submitted for the MAR14 Meeting of The American Physical Society

Commensurate-incommensurate solid transition in the ⁴He monolayer on a single γ -graphyne sheet YONGKYUNG KWON, JEONGH-WAN AHN, School of Physics, KonKuk University, Korea — We have performed path-integral Monte Carlo calculations to study ⁴He adsorption on γ -graphyne. Assuming the ⁴He-substrate interaction described by a pairwise sum of empirical helium-carbon interatomic potentials, we find that unlike α -graphyne [1], a single sheet of γ -graphyne is not permeable to ⁴He atoms despite its large surface area. One-dimensional density distribution shows layer-by-layer growth of ⁴He on γ -graphyne. Partially-filled ⁴He monolayers are found to exhibit different commensurate structures depending on the helium coverage; it shows a C_{2/2} commensurate structure at the areal density of 0.0491 Å⁻², a C_{3/2} structure at 0.0736 Å⁻², and a C_{4/2} structure at 0.0982 Å⁻². After going through various domain structures, the ⁴He monolayer is completed at the areal density of 0.115 Å⁻² where ⁴He adatoms form an incommensurate triangular solid. Possible superfluid response of the ⁴He monolayer on γ -graphyne is now under investigation.

[1] Y. Kwon, H. Shin, and H. Lee, Phys. Rev. B 88, 201403(R) (2013).

Yongkyung Kwon School of Physics, KonKuk University, Korea

Date submitted: 14 Nov 2013

Electronic form version 1.4