Influence of spatial disorder on the superconducting state of a 3D superconductor

CAROLINA PARRA, Universidad Tecnica Federico Santa Maria,
FRANCIS NIESTEMSKI, PAULA GIRALDO-GALLO, ALEX W. CONTRYMAN,
THEODORE H. GEBALLE, IAN R. FISHER, HARI C. MANOHARAN, Stanford
University — We present the first measurements of the local tunneling density of
states on the three-dimensional superconductor $BaPb_{1-x}Bi_xO_3$ as a function of Bi
doping. Scanning tunneling spectroscopy measurements are performed on a sequence
of samples which exhibit a field-tuned superconductor-to-insulator (SIT) transition.
Our study shows that gap variations in the superconducting (SC) state (as a sign of
SC disorder level) increase when the system moves towards the SIT phase boundary,
with spatial inhomogeneity comparable in size to the material’s coherence length.
We demonstrate that this highly inhomogeneous local gap size is always finite at
every location, even for Bi concentration closest to the SIT, where local insulating
behavior is expected and globally confirmed in transport experiments. Our results
also suggest a method for increasing the critical temperature for this material by
reducing its spatial disorder in the appropriate part of the phase diagram.

Carolina Parra
Universidad Tecnica Federico Santa Maria

Date submitted: 14 Nov 2013

Electronic form version 1.4