Spin Relaxation due to Charge Noise in Si Quantum Dot with Valley Splitting

PEIHAO HUANG, XUEDONG HU, State Univ of NY - Buffalo

We study the relaxation of an electron spin qubit in a Si quantum dot due to charge noise. In particular, we clarify how the presence of the conduction band valleys influences the spin relaxation. In single-valley semiconductor quantum dots, spin relaxation is through the mixing of spin and envelope orbital states via spin-orbit interaction. In Si, the relaxation could also be through the mixing of spin and valley states. We find that this additional spin relaxation channel, via spin-valley mixing and charge noise, is indeed important for an electron spin in a Si quantum dot. By considering both spin-valley and intra-valley spin-orbit mixings and the charge noise in a Si device, we find that spin relaxation rate peaks at the hot spot, where the Zeeman splitting matches the valley splitting. Furthermore, because of a weaker field-dependence, the spin relaxation rate due to charge noise could dominate over phonon noise at low magnetic fields, which fits well with recent experiments.

1We thank support by US ARO and NSF PIF.

Peihao Huang
State Univ of NY - Buffalo

Date submitted: 14 Nov 2013

Electronic form version 1.4