MAR14-2013-003850

Abstract for an Invited Paper for the MAR14 Meeting of the American Physical Society

Quantum and nonlinear optics at the single photon level with quantum dots in optical nanocavities JELENA VUCKOVIC, Stanford University

By embedding a single InAs/GaAs quantum dot (QD) inside a nanocavity that strongly localizes optical field, it is possible to achieve a very strong light-matter interaction. The strength of this interaction is characterized by the coherent emitter-field coupling strength (g) which also sets the limit on the operational speed of such a system. While in systems consisting of a single neutral atom coupled to a cavity maximum $q/(2\pi) \sim 20$ MHz has been demonstrated, InAs/GaAs QDs inside photonic crystal cavities have reached $q/(2\pi) \sim 40$ GHz. Such a QD-cavity platform has also been employed in a series of quantum and nonlinear optics experiments at the single or few photon level which will be discussed in this talk, including: 1) photon blockade and photon induced tunneling (which can be employed to build high throughput sources of single or n-photons); 2) all optical switching at the single photon level and at the speed of 25GHz (which can be employed in all optical gates); 3) single quantum dot based optical modulators that operate at the sub-fJ control energies and potentially at >10 GHz speeds; 4) single QD spin-photon interfaces that could be employed as nodes of a quantum repeater. However, considering that the speed of each of these elements is ultimately limited by g, which in turn scales as $\sim 1/\sqrt{V}$, where V is the optical mode volume, it is worthwhile building structures with V even smaller than those of photonic crystal cavities (which typically have V on the order of a cubic optical wavelength). With our recently demonstrated metal- GaAs nanocavity, V is squeezed by more than 10 times relative to photonic crystal cavities, and we demonstrate $q/(2\pi) > 100$ GHz with a single, embedded InAs/GaAs quantum dot. We are also working on extensions of this platform from two-level to multi-level quantum emitters strongly coupled to a cavity, as well as the extensions to emitters coupled to photonic molecules and cavity arrays, with applications in nonclassical light generation and quantum simulation.