Angle dependence of Shubnikov-de Haas effect of CeOs$_4$Sb$_{12}$ and NdOs$_4$Sb$_{12}$

P.-C. HO, Physics/CSU-Fresno, J. SINGLETON, F.F. BALAKIREV, NHMFL/LANL, New Mexico, M.B. MAPLE, Physics/UC San Diego, T. YANAGISAWA, Physics/Hokkaido U, Japan — The filled skutterudite compounds CeOs$_4$Sb$_{12}$, PrOs$_4$Sb$_{12}$, and NdOs$_4$Sb$_{12}$ are respectively a 1 K antiferromagnetic (AFM) Kondo insulator, a 1.85 K unconventional superconductor, and a 1 K mean-field type ferromagnet (FM), suggesting that superconductivity in PrOs$_4$Sb$_{12}$ may result from proximity to AFM and FM quantum-critical points. Fermi-surface measurements of NdOs$_4$Sb$_{12}$ and CeOs$_4$Sb$_{12}$ could therefore give insights into the pairing mechanism. A rotational skin-depth measurement probe developed at pulse field facility of NHMFL is used to detect the angle dependence of the Shubnikov-de Haas oscillations in single crystals of CeOs$_4$Sb$_{12}$ and NdOs$_4$Sb$_{12}$ at fields up to 60 T. The results indicate that NdOs$_4$Sb$_{12}$ has similar Fermi surfaces as those of PrOs$_4$Sb$_{12}$ and LaOs$_4$Sb$_{12}$ but the Fermi surface of CeOs$_4$Sb$_{12}$ is much different than those three compounds’. CeOs$_4$Sb$_{12}$ has similar Fermi surfaces as those of CeRu$_4$Sb$_{12}$.

Research at CSU-Fresno is supported by NSF DMR-1104544; at UCSD by NSF DMR-0802478 and US DOE DE-FG02-04ER46105; at NHMFL by DOE, NSF, and FL; at Hokkaido U by MEXT, Jpn.