Abstract Submitted
for the MAR14 Meeting of
The American Physical Society

Kondo-like magnetism induced by single vacancies in graphene
CHI-CHENG LEE, YUKIKO YAMADA-TAKAMURA, TAISUKE OZAKI, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan — A new phase for graphene with a single carbon vacancy was found by our first-principles calculation. Single vacancies can be developed by irradiation experiments in graphene and were found to be magnetic.[1,2] The measured Kondo effect also triggered extensive studies.[3] The current understanding of the ground state best supported by density functional theory is that a Stoner instability gives rise to ferromagnetism of \(\pi \) electrons aligned with the localized moment of a \(\sigma \) dangling bond. The induced \(\pi \) magnetic moments were suggested to vanish at low vacancy concentrations. However, the observed Kondo effect suggests that \(\pi \) electrons around the vacancy should antiferromagnetically couple to the local moment and carry non-vanishing moments. Here we propose that a phase possessing both significant out-of-plane displacements and \(\pi \) bands with antiferromagnetic coupling to the localized \(\sigma \) moment is the ground state.[4] With the features we provide, it is possible for spin-resolved STM, STS, and ARPES measurements to verify the proposed phase. [1] M. M. Ugeda et al., Phys. Rev. Lett. 104, 096804 (2010). [2] R. R. Nair et al., Nature Phys. 8, 199 (2012). [3] J.-H. Chen et al., Nature Phys. 7, 535 (2011). [4] C.-C. Lee et al., http://arxiv.org/abs/1311.0609.