Quantum logic gates by Walsh modulation HARRISON BALL1,
DAVID HAYES2, MICHAEL J. BIERCUK3, ARC Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, NSW 2006 Australia — We study a new class of error suppressing protocols for nontrivial quantum logic gates robust against band-limited stochastic noise to high order. Our underlying mathematical framework is to generate an amplitude modulated control field via synthesis of Walsh functions (an orthonormal set of basis functions well-known in signal processing) resulting in a composite pulse sequence parameterized in the amplitudes of the Walsh spectral components. In this work we show how one Walsh amplitude may be constrained to generate a target Bloch rotation while the remainder may be fine-tuned to optimize the decoupling power of the sequence. We use the filter function formalism to quantify the decoupling power and to derive a decoupling condition which enables us to prescribe an optimization procedure, searching over Walsh spectral weights. With these insights we characterize the robustness of a generalized family of rotary spin echo sequences against both dephasing noise and relaxation noise coaxial with control. We further derive a family of nontrivial, bounded, amplitude modulated gates decoupled to first order against dephasing noise, and describe a method to discover similar families of higher order protocols intrinsically compatible with control hardware and digital control circuitry.

1National Measurement Institute, West Lindfield, NSW 2070 Australia
2National Measurement Institute, West Lindfield, NSW 2070 Australia
3National Measurement Institute, West Lindfield, NSW 2070 Australia

Harrison Ball
ARC Centre for Engineered Quantum Systems, School of Physics,
The University of Sydney, NSW 2006 Australia

Date submitted: 14 Nov 2013

Electronic form version 1.4