Band gap engineering via electrostatic chemical strain in cation ordered LaSrAlO$_4$ PRASANNA V. BALACHANDRAN, JAMES M. RONDINELLI, Drexel University, Philadelphia, PA, USA — In this work, we employ density functional theory to examine a novel design route that employs A-site cation ordering to engineer the band gaps of (A,A')BO$_4$ Ruddlesden-Popper (RP) oxides. Using LaSrAlO$_4$ as a model material, we show that the band gap is highly sensitive to the A-site cation ordering ranging from 3-4.5 eV. When the [AlO$_2$]$^{-1}$ layers are interleaved between two chemically equivalent [LaO]$^{1+}$ or [SrO]$^{0+}$ layers, we obtain the smallest band gap with a reduction of ~1 eV determined from the Heyd, Scuseria, and Ernzerhof (HSE) hybrid exchange-correlation functional. We relate the observed band gap reduction to the local bond distortions arising from electrostatic chemical strain induced changes to the O 2p and La 5d states in the valence and conduction bands, respectively.

The project was supported by The Defense Advanced Research Projects Agency (grant no. N66001-12-4224). The views, opinions, and/or findings reported here are solely those of the authors and do not represent official views of DARPA or DOD.