Abstract Submitted for the MAR14 Meeting of The American Physical Society

Electronic Structure and Magnetism of Ir based Oxides¹ INDRA DASGUPTA², Department of Solid State Physics, SWARUP PANDA³, None — We have investigated in details the electronic structure of several Ir based oxides where in addition to crystal field and Coulomb repulsion, the spin-orbit coupling (SOC) plays an important role. We shall first consider two Ir based oxides with 4+ (d⁵) charge state of Ir, namely the insulating double perovskite Sr_2CeIrO_6 and the metallic rutile IrO_2 , and examine the validity of the novel spin-orbital entangled $J_{eff}=1/2$ states for the description of their electronic structure. In particular, explore in details whether the $J_{eff}=1/2$ state survives for the itinerant metallic IrO_2 . Finally we shall also present our electronic structure calculations on 6H perovskite type iridates where different charge state of Ir (5+, 4.5+, and 4+) may be realized. We show in addition to SOC, the strong intra-dimer hopping play a crucial role for the magnetic ground state and the insulating property of these systems. We shall compare our results with available experiments.

¹The authors thank Department of Science and Technology, Govt. of India, for financial support.

²Indian Association for the Cultivation of Science, Jadavpur, Kolkata 70032 India ³Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 India

Indra Dasgupta Indian Assoc/Cultivation of Sc

Date submitted: 14 Nov 2013 Electronic form version 1.4