Abstract Submitted for the MAR14 Meeting of The American Physical Society

TiO2(B)Polycrystalline Nanosheet Films Deposited via Langmuir-Blodgett Method¹ LAURA BIEDERMANN, PAUL KOTULA, THOMAS BEECHEM, Sandia National Laboratories, ANTHONY DYLLA, KEITH STEVENSON, U. of Texas at Austin, CALVIN CHAN, Sandia National Laboratories — As an energy storage material, TiO_2 offers higher Li⁺ capacities and smaller volume changes with lithiation than graphite electrodes. In particular, the bronze phase, $TiO_2(B)$ has a higher lithiation capacity (1.0 Li⁺/Ti) and faster lithiation kinetics due to its larger lattice parameters than other TiO_2 polymorphs. Direct observation of lithiation will require $TiO_2(B)$ monolayers, such as those prepared via Langmuir-Blodgett deposition of the nanosheets (NS). Optical microscopy of the $TiO_2(B)$ -NS Langmuir monolayer at the air/water interface shows that these nanosheets assemble into large (>1 mm) islands. These elastic TiO₂(B)-NS monolayers are deposited on diverse substrates for further characterization. Electron diffraction in both transmission electron microscopy (TEM) and low-energy electron microscopy (LEEM) of these films confirm that their polycrystalline structure is predominately composed of $TiO_2(B)$ nanocrystals, ~10s nm across. Discrimination of monolayer and bilayer $TiO_2(B)$ is evident in LEEM. Thermal stability of these nanosheets is investigated via in-situ TEM and ex-situ Raman spectroscopy. This monolayer $TiO_2(B)$ deposition will allow future observations of lithiation and phase changes.

¹Sandia is managed by Sandia Corp., a subsidiary Lockheed Martin, for the U.S. DOE NNSA (DE-AC04-94AL85000). Work was supported by an U.S. DOE BES EFRC (DE-SC0001091).

Laura Biedermann Sandia Natl Labs

Date submitted: 14 Nov 2013

Electronic form version 1.4