Fermi-surface reconstruction in the cuprate superconductor
YBCO via the thermal Hall effect GAEL GRISSONNANCHE, SOPHIE
DUFOUR-BEAUSEJOUR, FRANCIS LALIBERTE, ALEXIS RIOPEL, OLIVIER
CYR-CHONIERE, NICOLAS DOIRON-LEYRAUD, LOUIS TAILLEFER, University
of Sherbrooke, JAMES DAY, BRAD RAMSHAW, RUIXING LIANG,
DOUG BONN, WALTER HARDY, University of British Columbia, DAVID GRAF,
NHMFL Tallahassee, STEFFEN KRAMER, LNCMI Grenoble — We recently
showed that the thermal conductivity κ_{xx} can be used to directly measure the upper
critical field H_{c2} in cuprate superconductors [1]. Here we show that the thermal Hall
conductivity κ_{xy} can be used to probe the nature of the carriers in these materials.
We present a study of κ_{xy} in YBCO at a doping $p = 0.11$, as a function of magnetic
field up to 35 T down to low temperature. The fact that κ_{xy} is negative above
$H_{c2} = 24$ T confirms the presence of an electron-like pocket in the normal-state
Fermi surface [2], the result of a reconstruction caused by the emergence of charge
order at low temperature [3]. We show how the Fermi-surface reconstruction evolves
Communications 2, 432 (2011).