Mapping the anisotropic Lande g-factor tensor of 1D GaAs holes in all 3 spatial directions

KARINA HUDSON, ASHWIN SRINIVASAN, QING-WEN WANG, LAREINE YEOH, OLEH KLOCHAN, University of New South Wales, IAN FARRER, DAVID RITCHIE, University of Cambridge, ALEX HAMILTON, University of New South Wales — We have studied the Zeeman splitting of 1D holes formed on a (100) GaAs/AlGaAs heterostructure on a single cooldown. The strong spin orbit coupling and 1D confinement give rise to a highly anisotropic spin splitting. By use of the high-symmetry (100) crystal, we eliminate the effects of crystal anisotropy on our measurements. In measuring the spin splitting as a function of angle between the wire and the applied magnetic field, we are able to identify the principle axes of the g-tensor. We show that the principle axes are defined by the potential confining the 1D holes, and are not affected by the crystal axes. We find that $g_\parallel < g_{\perp} < g_\parallel$, where g_\parallel refers to the in-plane g-factors parallel and perpendicular to the wire, and g_{\perp} refers to the g-factor perpendicular to the 2D well.