Tuning the Surface States of Ultra-thin Topological Insulator Films

JIANXIN ZHONG, Xiangtan University — In this talk, I will introduce our recent progress on tuning the surface states of ultra-thin topological insulator films. Using first-principles methods, we explain the puzzling band-topology difference between Sb$_2$Se$_3$ and Bi$_2$Se$_3$ and propose an approach to tuning the topological phase by strain [1]. We demonstrate that Sb$_2$Se$_3$ can be converted into a topological insulator by applying compressive strain while the tensile strain can turn Bi$_2$Se$_3$ into a normal insulator. I will also show that the separation distance between quintuple layers (QL) in ultra-thin Bi$_2$Se$_3$ and Bi$_2$Te$_3$ films have a large increase after relaxation, leading to gap-opening at the surface Dirac cone, in good agreement with the experimental observation [2]. I will further show that Pb adlayers on Bi$_2$Se$_3$ result in splitting of the Dirac cones and large Rashba spin splitting of the quantum well states [3]. Most importantly, the quantum size effect of Pb adlayers leads to an oscillatory behavior of the Rashba splitting.

Supported by CNSFC, National Basic Research Program of China (2012CB921303), and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.