Theory of Jahn Teller signatures in the infrared absorption of C$_{60}^{3-}$

S. SHAHAB NAGHAVI, SISSA, Trieste, Italy, MICHELE FABRIZIO, ERIO TOSATTI, SISSA, CNR-IOM Democritos and ICTP, Trieste, Italy, CONDENSED MATTER PHYSICS TEAM — Among the molecular superconductors, trivalent fullerides such as Cs$_3$C$_{60}$, with three folded degenerate HOMO and a fully ordered pressure induced superconductor-insulator are still intriguing. The orbital degeneracy of the fulleride ion C$_{60}^{3-}$ implies that besides a Jahn-Teller distorted state with $S=1/2$ and high-lying spin ($S=3/2$) excitation known from NMR, another undetected orbital excitation with $S=1/2$ should exist. Building upon accurate density functional theory calculations where properties such as the infrared (IR) spectrum and its Jahn-Teller features are well described, we extracted the ab-initio orbital and spin spectrum of a C$_{60}^{3-}$ ion in different spin and orbital states including a new low lying L=2 $S=1/2$ excitation. Despite a Jahn-Teller distortion so small to be observable in its IR spectrum, this state is found to gain a large zero-point energy, placing it just above the L=1, $S=1/2$ ion ground state, and way below the L=0, $S=3/2$ high lying excitation. We can now elegantly explain the surprising early thermal disappearance of the low-temperature Jahn-Teller IR spectral features and splitting without a concurrent rise of spin susceptibility that would instead be required by population of the high spin $S=3/2$ excitation.

1Sponsored by EU LEMSUPER Grant 283214.

Erio Tosatti
SISSA, CNR-IOM Democritos and ICTP, Trieste, Italy

Date submitted: 15 Nov 2013 Electronic form version 1.4