Abstract Submitted for the MAR14 Meeting of The American Physical Society

First-principles study on structure stabilities of α -S and Na-S battery systems¹ HIROYOSHI MOMIDA², TAMIO OGUCHI³, ISIR, Osaka University — To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α -S crystal at ambient temperature and pressure, and α -S consists of puckered S₈ rings which crystallize in space group *Fddd*. In this study, the crystal structure of α -S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S₈ rings have crucial roles on cohesion of α -S. We also study structure stabilities of Na₂S, NaS, NaS₂, and Na₂S₅ phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+xS \rightarrow Na₂S_x, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results.

¹This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. ²ESICB, Kyoto University ³ESICB, Kyoto University

> Hiroyoshi Momida ISIR, Osaka University

Date submitted: 15 Nov 2013

Electronic form version 1.4