Abstract Submitted for the MAR14 Meeting of The American Physical Society

Investigation of Spin Pumping in Fe₃Si/GaAs and Fe₃Si/Bi₂Se₃ Bilayer Structure HUNG-YI HUNG, HSIAO-YU LIN, JUEINAI KWO, NTHU/Physics, TSUNG-HUNG CHIANG, NTHU/Mat. Sci. and Eng., JAUYN G. LIN, NTU/CCMS, SHANG FAN LEE, IOP/AS, BEI ZHEN SYU, MINGHWEI HONG, Institute of Applied Physics, NTU — Spin pumping, a dynamical spininjection method to generate a pure spin current by magnetization precession, can be used to conduct the spin injection into a wide range of materials. Here we report the spin pumping experiment by utilizing epitaxial ferromagnetic Fe_3Si thin films interfaced with GaAs for spin injection into semiconductor, and interfaced with Bi_2Se_3 for exploitation of topological insulator (TI) edge or surface states at the TI/ferromagnet (FM) interfaces. An inverse spin Hall effect voltage as large as 49 μ V, and 19 μ V was detected in Fe₃Si/p-GaAs, and Fe₃Si/n-GaAs structures, respectively, under a microwave power of 100 mW. Our analysis showed that the spin injection efficiency is affected by the Schottky barrier height of Fe₃Si/(n- or p-) GaAs interface, and so is the spin mixing conductance. As for the TI/FM structure, an out of plane spin transfer torque is generated due to current driven spin accumulations. Spin pumping in Fe₃Si/Bi₂Se₃ structure using Pt electrodes has been carried out to elucidate spins diffusion process from Fe₃Si via Bi₂Se₃ into Pt, and will be reported.

> Minghwei Hong Institute of Applied Physics, NTU

Date submitted: 15 Nov 2013

Electronic form version 1.4