Abstract Submitted for the MAR14 Meeting of The American Physical Society

Orbital Fluctuation Theory for LaFeAsO_{1-x}H_x: Pnictogen Height Instability and Superconductivity due to Orbital Fluctuations YOUICHI YAMAKAWA, SEIICHIRO ONARI, HIROSHI KONTANI, Nagoya University — The isostructural transition in the tetragonal (C_4) phase, with sizable change in the As-height, is realized in heavily H-doped LaFeAsO, Pr-doped CaFe₂As₂, and Nadoped BaFe₂As₂. Here, we study the mechanism of spin-fluctuation-driven structure transition in LaFeAsO_{1-x}H_x by using the self-consistent vertex correction (SC-VC) method. In heavily-doped case $(x \sim 0.5)$, the non-nematic orbital order is caused by the VC due to d_{xy} -orbital spin fluctuations, and triggers the C_4 isostructural transition. In lightly-doped case $(x \sim 0)$, the orthorhombic phase is realized by the orbital-nematic order, which originates from the VC due to (d_{xz}, d_{yz}) -orbital spin fluctuations. Both nematic and non-nematic orbital fluctuations contribute in realizing higher- T_c superconductivity.

Youichi Yamakawa Nagoya University

Date submitted: 15 Nov 2013 Electronic form version 1.4