Charge transport properties of boron/nitrogen binary doped graphene nanoribbons: An ab initio study

SEONG SIK KIM, HAN SEUL KIM, HYO SEOK KIM, YONG-HOON KIM1, Graduate School of EEWS, KAIST, YONG-HOON KIM GROUP TEAM — Opening a bandgap by forming graphene nanoribbons (GNRs) and tailoring their properties via doping is a promising direction to achieve graphene-based advanced electronic devices. Applying a first-principles computational approach combining density functional theory (DFT) and DFT-based non-equilibrium Green’s function (NEGF) calculation, we herein study the structural, electronic, and charge transport properties of boron-nitrogen binary edge doped GNRs and show that it can achieve novel doping effects that are absent for the single B or N doping. For the armchair GNRs, we find that the B-N edge co-doping almost perfectly recovers the conductance of pristine GNRs. For the zigzag GNRs, it is found to support spatially and energetically spin-polarized currents in the absence of magnetic electrodes or external gate fields: The spin-up (spin-down) currents along the B-N undoped edge and in the valence (conduction) band edge region. This may lead to a novel scheme of graphene band engineering and benefit the design of graphene-based spintronic devices.

This work was supported by the Basic Science Research Grant (No. 2012R1A1A2044793), Global Frontier Program (No. 2013-073298), and Nano-Material Technology Development Program (2012M3A7B4049888) of the National Research Foundation funded by the Ministry of Education, Science and Technology of Korea.

1corresponding author

Seong Sik Kim
Graduate School of EEWS, KAIST

Date submitted: 15 Nov 2013

Electronic form version 1.4