Abstract Submitted for the MAR14 Meeting of The American Physical Society

Magnetic and Electronic Phase Diagram of Sr₂VFeAsO_{3-d} YU-JIRO TOJO, TAIZO SHIBUYA, TETSURO NAKAMURA, KOICHIRO SHOJI, MASANORI MATOBA, Dep. APPI, Keio University, SHINTARO YASUI, MIT-SURU ITOH, MSL, Tokyo Institute of Technology, SHINJI KITAO, MAKOTO SETO, RRI, Kyoto University, YOICHI KAMIHARA, Dep. APPI, Keio University, RESEARCH GRANTS FROM KEIO UNIV. COLLABORATION, MSL COLLAB-ORATIVE RESEARCH PROJECT COLLABORATION, JOINT USAGE IN KRRI COLLABORATION — $Ae_2MFePnO_3$ (so-called 21113 systems) with perovskitetype layers such as Ae₂MO₃, where Ae denotes alkaline earth metals, M does Sc, Ti, Cr, V and other transition metal atoms and Pn does As and P shows superconductivity at T <46 K. $Sr_2VFeAsO_{3-d}$ is a representative compound in 21113 systems. [Zhu et al, Phys. Rev. B (2009); Ogino et al, Supercond. Sci. Technol. (2009); Ogino et al, Supercond. Sci. Technol. (2009)] Although the oxygen deficiency (d) as a function of T_c is still controversial in $Sr_2VFeAsO_{3-d}$, many samples have been reported as superconductors with $T_{\rm c} = 24-37$ K. In this study, a polycrystalline $Sr_2VFeAsO_{3-d}$ (d = ~ 0.1 - 0.6) were prepared by a solid state reaction using an alumina tube in a sealed silica tube. DC electrical resistivity was measured by a four-probe technique. Magnetization measurements were performed on a superconducting quantum interference device. ⁵⁷Fe Mossbauer spectra were obtained using conventional equipment. The electronic and magnetic phase diagram of $Sr_2VFeAsO_{3-d}$ is elucidated.

> Yoichi Kamihara Keio University

Date submitted: 15 Nov 2013

Electronic form version 1.4