Abstract Submitted for the MAR14 Meeting of The American Physical Society

Nanoscale control of oxide interface conduction in graphenecomplex-oxide heterostructures¹ MENGCHEN HUANG, University of Pittsburgh, SANGWOO RYU, University of Wisconsin-Madison, FERESHTE GHA-HARI, Columbia University, GIRIRAJ JNAWALI, University of Pittsburgh, JAYAKANTH RAVICHANDRAN, Columbia University, PATRICK IRVIN, University of Pittsburgh, PHILIP KIM, Columbia University, CHANG-BEOM EOM, University of Wisconsin-Madison, JEREMY LEVY, University of Pittsburgh -Graphene is a promising material for high-speed optoelectronic devices such as THz modulators and detectors. Recently, broadband THz emission and detection can be achieved with nanostructures at the $LaAlO_3/SrTiO_3$ interface². We have mechanically exfoliated single layer and multilayer graphene on top of 3.4 unit cell LaAlO₃/SrTiO₃ and successfully sketched nanowires in the 2DEG underneath graphene using conductive AFM lithgraphy³. Raman and AFM investigations confirm that the graphene quality and surface morphology remain unaltered by the writing process. These first experimental demonstrations of integrating graphene and LaAlO₃/SrTiO₃ are promising for future DC-THz photonic applications.

¹We gratefully acknowledge support for this work from ONR (N00014-13-1-0806), NSF(DMR-1124131, DMR-1104191), and AFOSR (FA9550-12-1-0342).
²Y. Ma, et al., Nano Lett. 13, 2284 (2013)
³C. Cen, et al., Nat. Mater. 7, 298 (2008)

> Mengchen Huang Univ of Pittsburgh

Date submitted: 15 Nov 2013

Electronic form version 1.4