Photoinduced Magnetism in Heterostructures of a Hofmann-like Framework and a Prussian Blue Analogue

M.K. PEPRAH, P.A. QUINTERO, T.V. BRINZARI, M.W. MEISEL, Dept. Physics and NHMFL, Univ. Florida, B. HOSTERMAN, M. SENDOVA, Div. Nat. Sci., New College of Florida, C.R. GROS, D.R. TALHAM, Dept. Chemistry, Univ. Florida — Heterostructured films of the Prussian blue analogue (PBA), \(\text{K}_4\text{Ni[Cr(CN)_6]_2nH}_2\text{O} \), and the 3D Hofmann-like \(\text{Fe(azpy)[Pt(CN)_4]_2nH}_2\text{O} \) (azpy = 4,4′-azopyridine) spin crossover system have been studied by magnetometry and Raman spectroscopy. The magnetization of the ferromagnetic NiCr-PBA, \(T_c \approx 70 \text{ K} \), can be altered by white light irradiation when coupled with the photoactive Fe-Pt framework. The effect is attributed to interface strain that develops when cooling from room temperature. This lattice distortion is relaxed when irradiation causes the Fe(II) to experience a low spin (\(S = 0 \)) to high spin (\(S = 2 \)) transition at \(T \leq 50 \text{ K} \). This work extends our recent photo-controlled magnetic heterostructures studies\(^2\) to include Fe(II) spin crossover complexes.

\(^{1}\)Supported by NSF DMR-1005581 (DRT), DMR-1202033 (MWM), and DMR-1157490 (NHMFL).

M.K. Peprah
Dept. Physics and NHMFL, Univ. Florida

Date submitted: 15 Nov 2013

Electronic form version 1.4