Demonstrating a four-qubit network for the surface code with superconducting qubits

SRIKANTH SRINIVASAN, EASWAR MAGESAN, JERRY CHOW, JAY GAMBITTA, ANDREW CROSS, NICHOLAS MASLUK, DAVID ABRAHAM, NICHOLAS BRONN, CHRISTOPHER LIRAKIS, MATTHIAS STEFFEN, IBM TJ Watson Research Center

— In the skew-symmetric layout of superconducting qubits and resonators for the surface-code error correction protocol, studying an inner ring structure of four qubits is a critical step towards demonstrating the core operations of a full plaquette tile. We show results for quantum devices consisting of twelve quantum degrees of freedom: four transmon qubits, coupled via four bus resonators, with four independent readout resonators. We discuss engineering challenges of such devices as well as benchmarked results for control and readout.

We acknowledge support from IARPA under contract W911NF-10-1-0324.