Abstract Submitted for the MAR14 Meeting of The American Physical Society

Elastic probes of length scales in jammed packings: from global response to point response KAMRAN KARIMI, CRAIG MALONEY, Carnegie Mellon University — We probe amorphous packings in different ways to determine whether or not characteristic length scales govern the elastic response and how these lengths depend on the area fraction of disks, ϕ . First we drive the system globally using either: i) a homogeneously deforming periodic cell of length L, ii) a force field having a plane-wave structure with wavelength L, iii) a homogeneously deforming rigid wall of length L. Methods i) and ii) give elastic moduli values that converge rapidly to the infinite system size limit and have ϕ -independent functional forms. Method iii), however shows a dramatic decrease in the shear modulus μ with increasing L. At low L, μ has a value that depends only weakly on ϕ , whereas, as L goes to infinity, μ must approach zero near jamming point ϕ_c . We show that the μ vs L curves at various ϕ can be collapsed into a master curve after scaling L by a quantity ξ that grows near ϕ_c . Secondly, we study the point response. We show that the response, in Fourier space, crossovers to the Kelvin solution for small wave vectors. This cross-over exhibits a lenghtscale that grows with ϕ in a similar fashion to the lengthscale determined by the global shear with a rigid box.

> Kamran Karimi Carnegie Mellon University

Date submitted: 15 Nov 2013

Electronic form version 1.4