Abstract Submitted for the MAR14 Meeting of The American Physical Society

Composition dependence of magnetic order and spin chirality of Kagomé lattices in BaMn_{1+x}Ru_{5-x}O₁₁ R-type ferrites¹ JUSTIN WOODS, GANG CAO, SEAN PARKIN, ERIC TEIPEL, LANCE DELONG, University of Kentucky — The effects of atomic disorder on magnetic frustration have not been extensively studied. Single-crystal BaMn_{2.49}Ru_{3.51}O₁₁ exhibits three closely-spaced anomalies in the magnetization at temperatures $T_1 = 183$ K, $T_2 = 171$ K and $T_3 = 128$ K, signaling complex magnetic/chiral ordering, due to an interplay between antiferromagnetic correlations, magnetic frustration and non-zero scalar chirality (induced by spin canting) within the hexagonal (Kagomé) ab-plane [1]. We observe that small increases in Ru content change the temperature and nature of the anomalies: A single crystal of composition BaMn_{1.915}Ru_{4.085}O₁₁ exhibits anomalies shifted to lower temperatures $T_1 = 149$ K, $T_2 = 90$ K and $T_3 = 48$ K. The anomaly at T_3 is rapidly weakened by fields H >25 Oe applied parallel to the Kagomé plane for both compositions studied; whereas further field increases shift the onset of magnetic order substantially upward to $T_1 = 175$ K for the higher Ru concentration.

[1] L. Shlyk et al., Phys. Rev. B 81, 014413 (2010).

¹Research supported by U.S. DoE Grant #DE-FG02-97ER45653.

Justin Woods University of Kentucky

Date submitted: 15 Nov 2013

Electronic form version 1.4