Magnetotransport measurements on Mn-doped Bi$_2$Se$_3$ Thin Films1 SERCAN BABAKIRAY, TRENT JOHNSON, PAVEL BORISOV, DAVID LEDERMAN, West Virginia University — The intrinsic n type conductivity of bulk topological insulator Bi$_2$Se$_3$ was compensated with Mn dopant to increase the resistivity. In addition, the magnetic character of Mn ions causes a gap opening of the corresponding Dirac cone surface states. We investigated the effect of the Mn on crystal structure as well as the transport and magnetic properties of Bi$_2$-xMnxSe$_3$ thin films grown by molecular beam epitaxy on Al$_2$O$_3$ (0001) substrates. Characteristic features in the form of the Kondo effect and weak anti-localization were observed at different Mn concentrations up to temperatures of 50 K accompanied by enhanced resistance and reduced carrier mobility. The phase coherence length of the two-dimensional sheet conductance decreased with increasing Mn-concentration, however the protected surface states were still present up to x=0.063.

1This work was supported by a Research Challenge Grant from West Virginia Higher Education Policy Commission (HEPC.dsr.12.29). Some of the work was performed using the West Virginia University Shared Research Facilities.