Optimization and doping of 112 Fe pnictide single crystals1 AK-SHAT PURI, Stony Brook University, JENNIFER MISURACA, Stony Brook University, University of Illinois at Urbana-Champaign, JEDEISHIAH K. MORRIS, Stony Brook University, MEIGAN ARONSON, Stony Brook University, Brookhaven National Laboratory — The recent discovery of Ca\textsubscript{1-x}La\textsubscript{x}FeAs\textsubscript{2}, which when doped with Sb has a \(T_c\) of 43K, has led to an increased interest in Fe pnictides in the 112 structure \cite{1}. We have grown plate-like single crystals of LaFe\textsubscript{0.6}Sb\textsubscript{2} from a self flux. These form in a tetragonal 112 structure with many Fe vacancies, as measured by single crystal x-ray diffraction. The crystal growths were optimized in two ways. Arc melting elemental Fe granules before use resulted in larger (\(~1\text{ cm}^2\)) crystals, and including a rapid cool-down during the growth avoided the formation of a parasitic phase, thus increasing the yield. Doping Ni into the structure resulted in a change in the lattice constants from \(a = 4.4026\text{ Å}, c = 10.0341\text{ Å}\) for undoped LaFe\textsubscript{0.6}Sb\textsubscript{2} to \(a = 4.4343\text{ Å}, c = 9.8911\text{ Å}\) for LaNiSb\textsubscript{2}. Energy dispersive x-ray spectroscopy showed that Ni replaces Fe and also occupies the vacancies, and at 89\% Ni doping, there are no vacancies in the structure. Due to the many vacancies in undoped LaFe\textsubscript{0.6}Sb\textsubscript{2}, the Sb residing near the vacant sites is strongly anharmonic in character; the electronic structure changes with doping and this is seen in the parameter becoming harmonic. \cite{1} Kudo et al. arXiv:1311.1269 (2013).

1We acknowledge the Office of Assistant Secretary of Defense for Research and Engineering for providing the NSSEFF funds that supported this research

Akshat Puri
Stony Brook University

Date submitted: 15 Nov 2013
Electronic form version 1.4