Theory of disorder-limited transport anisotropy in Fe-based superconductors1 PETER HIRSCHFELD, Department of Physics, University of Florida, Gainesville, FL 32611, YAN WANG, HI875049, INDRANIL PAUL, University of Paris VII (Diderot) — The unusual temperature dependence of the resistivity and its in-plane anisotropy observed in the Fe-based superconducting materials, particularly BaFe\textsubscript{2}As\textsubscript{2}, has been a longstanding puzzle. Here we construct a crude phenomenological model of the scattering of electrons from dopant induced nematic impurity states which explains many qualitative features of these experiments. Within this model, the high-temperature transport anisotropy near the magnetic and structural transitions is due almost entirely to the disordered nematogens, while below T_N. Fermi surface reconstruction competes with this effect.

1Research supported by NSF-DMR-1005625