Nearly-exact calculation of chromium dimer binding with auxiliary-field quantum Monte Carlo1 WIRAWAN PURWANTO, SHIWEI ZHANG, HENRY KRAKAUER, College of William and Mary — The binding of the strongly correlated Cr_2 molecule has long resisted accurate theoretical description, and Cr_2 has become a landmark test for many-body computational methods. We first performed exact auxiliary-field quantum Monte Carlo (AFQMC) calculations using a moderately-sized basis set. In parallel, phaseless AFQMC2 calculations were carried out using the same and larger basis sets to remove the finite-basis errors from the exact AFQMC calculations. Results on Cr_2 ground-state properties, including binding energy, equilibrium distance, and vibrational frequency, are in excellent agreement with experiment.

1Supported by DOE, ONR, and NSF. Computing provided by NSF (Blue Waters) and DOE (INCITE)