Abstract Submitted for the MAR14 Meeting of The American Physical Society

Nearly-exact calculation of chromium dimer binding with auxiliary-field quantum Monte Carlo¹ WIRAWAN PURWANTO, SHIWEI ZHANG, HENRY KRAKAUER, College of William and Mary — The binding of the strongly correlated Cr₂ molecule has long resisted accurate theoretical description, and Cr₂ has become a landmark test for many-body computational methods. We first performed exact auxiliary-field quantum Monte Carlo (AFQMC) calculations using a moderately-sized basis set. In parallel, phaseless AFQMC² calculations were carried out using the same and larger basis sets to remove the finite-basis errors from the exact AFQMC calculations. Results on Cr₂ ground-state properties, including binding energy, equilibrium distance, and vibrational frequency, are in excellent agreement with experiment.

¹Supported by DOE, ONR, and NSF. Computing provided by NSF (Blue Waters) and DOE (INCITE)

²Zhang and Krakauer, *Phys. Rev. Lett.* **90**, 136401 (2003)

Wirawan Purwanto College of William and Mary

Date submitted: 15 Nov 2013 Electronic form version 1.4