Abstract Submitted for the MAR14 Meeting of The American Physical Society

First principles calculations of enthalpy and O-H stretching frequency of hydrogen-bonded acid-base complexes¹ MESFIN TSIGE, RAM BHATTA, ALI DHINOJWALA, The University of Akron — Understanding the acid-base interactions is important in surface science as it helps to rationalize materials properties such as wetting, adhesion and tribology. Quantitative relation between changes in enthalpy (ΔH) and frequency shift ($\Delta \nu$) during the acid base interaction is particularly important. We investigate ΔH and $\Delta \nu$ of twenty-five complexes of acids (methanol, ethanol, propanol, butanol and phenol) with bases (benzene, pyridine, DMSO, Et₂O and THF) in CCl₄ using intermolecular perturbation theory calculations. ΔH and $\Delta \nu$ of complexes of all alcohols with bases except benzene fall in the range from -14 kJ/mol to -28 kJ/mol and 215 cm^{-1} to 523 cm⁻¹, respectively. Smaller values of ΔH (-2 to -6 kJ/mol) and $\Delta \nu$ (23 to 70 $\rm cm^{-1}$) are estimated for benzene. For all the studied complexes, $\Delta \rm H$ varies linearly $(\mathbb{R}^2 ? 0.974)$ with $\Delta \nu$ yielding the average slope and intercept of 0.056 and 1.5, respectively. Linear correlations were found between theoretical and experimental values of ΔH as well as $\Delta \nu$ and are concurrent with the Badger-Bauer rule.

¹This work is supported by the National Science Foundation

Mesfin Tsige Univ of Akron

Date submitted: 15 Nov 2013

Electronic form version 1.4