Ba NMR studies of the triangular lattice antiferromagnets GEOR-
gios KOUTROULAKIS, Los Alamos National Laboratory, TONG ZHOU, De-
partment of Physics & Astronomy, UCLA, CRISTIAN BATISTA, YOSHIT-
OMO KAMIYA, JOE THOMPSON, Los Alamos National Laboratory, STUART
BROWN, Department of Physics & Astronomy, UCLA, HAIDONG ZHOU, De-
partment of Physics & Astronomy, University of Tennessee — Ba$_3$MSb$_2$O$_9$, with
$M=$Co, Ni are triangular lattice magnetic systems with near-neighbor antiferro-
magnetic exchange. Previous studies have shown that Ba$_3$CoSb$_2$O$_9$ has a stabilized
up-up-down spin configuration with in-plane field and the resultant one-third mag-
netization plateau has been observed. On the other hand, for the $M=$Ni system
with 6H-B structure there has been no evidence of a magnetic ordered phase and
thus it is being seen as a candidate spin-liquid material. Existing NMR data show
a very broad Ba line comprised of signals from three different Ba sites, and the
relaxation rate show a very weak temperature dependece, which is similar to the
Co compound in the high symmetry phase. Here we report on Ba nuclear magnetic
resonance (NMR) spectroscopy and spin-lattice relaxation measurements for both
compounds. For the Co system, we will report data revealing the magnetization
process up to 30T and present a detailed picture of the phase diagram. For the
Ni compound, we are reporting the temperature evolution of the spectra and the
temperature dependence of the relaxation rate for both Ba and Sb.

Tong Zhou
Department of Physics & Astronomy, UCLA

Date submitted: 15 Nov 2013

Electronic form version 1.4