Abstract Submitted for the MAR14 Meeting of The American Physical Society

Laser MBE for atomic layer by layer growth of LaNiO₃ films and superlattices from separate oxide targets MARYAM GOLA-LIKHANI, QINGYU LEI, Department of Physics, Temple University, Philadelphia, PASQUALE ORGIANI, CNR-SPIN, UOS Salerno, I-84084 Fisciano (SA), Italy, XI-AOXING XI, Department of Physics, Temple University, Philadelphia — Laser MBE was used to grow Nickelate thin films and superlattices in atomic layer by layer manner from separate oxide targets. Stoichiometry and full layer coverage was controlled by in-situ monitoring of Reflection High Energy Electron Diffraction (RHEED) intensity oscillation. LaNiO₃ ultra-thin films were grown from La₂O₃ and NiO targets on LaAlO₃ and SrTiO₃ substrates. X-ray diffraction, x-ray reflectivity, and atomic force microscopy were used to characterize the structure, thickness, and surface morphology of the films. The origin of thickness dependent metal to insulator transition was studied using the transport properties and x-ray absorption spectroscopy measurements. Single unit cell $LaNiO_3/LaAlO_3$ superlattices were grown from La_2O_3 , NiO and Al_2O_3 targets on LaAlO₃ substrate. By means of polarization-dependent x-ray Absorption Spectroscopy, orbital ordering in these supperlattices was studied and the results are presented herein.

> Maryam Golalikhani Department of Physics, Temple University, Philadelphia

Date submitted: 15 Nov 2013

Electronic form version 1.4