High Density Methane Storage in Nanoporous Carbon
TYLER RASH, ELMAR DOHNKE, YUCHOONG SOO, BRETTL MALAND, University of Missouri, PLAMEN DOYNOV, MRIBlack, YUYI LIA, PETER PFEIFER, University of Missouri, ALL-CRAFT TEAM, MRIBlack COllaborATION — Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.