Abstract Submitted
for the MAR14 Meeting of
The American Physical Society

Pressure Distribution and Critical Exponent in Statically Jammed and Shear-Driven Frictionless Disks

STEPHEN TEITEL, Univ of Rochester, DANIEL VAGBERG, Umeå University, YEGANG WU, Univ of Rochester, PETER OLSSON, Umeå University — We numerically study the distributions of global pressure that are found in ensembles of statically jammed and quasistatically sheared systems of bidisperse, frictionless, disks at fixed packing fraction ϕ in two dimensions. We use these distributions to address the question of how pressure increases as ϕ increases above the jamming point ϕ_J, $p \sim |\phi - \phi_J|^y$. For statically jammed ensembles, our results are consistent with the exponent y being simply related to the power law of the interparticle soft-core interaction. For sheared systems, however, the value of y is consistent with a non-trivial value, as found previously in rheological simulations.

1Supported by NSF grant DMR-1205800 and Swedish Research Council grant 2010-3725. Resources provided by Swedish National Infrastructure for Computing (SNIC) at PDC and HPC2N, and Center for Integrated Research Computing (CIRC) at the Univ of Rochester

Stephen Teitel
Univ of Rochester

Date submitted: 15 Nov 2013

Electronic form version 1.4