THz investigations of graphene-complex-oxide heterostructures

GIRIRAJ JNAWALI, LU CHEN, PATRICK IRVIN, JEREMY LEVY, University of Pittsburgh, SANGWOO RYU, CHANG-BEOM EOM, University of Wisconsin-Madison, FERESHTE GHAHARI, JAYAKANTH RAVICхANDRAN, PHILIP KIM, Columbia University — The unique and multifaceted properties of graphene have fascinated scientists and engineers for a decade now. A new frontier in research concerns properties of graphene in the THz-IR region, where the collective excitation of graphene 2D electron gas (2DEG) into plasmonic waves has proven the salient feature. Complex oxide heterostructures (e.g., LaAlO$_3$/SrTiO$_3$, LAO/STO) also support a 2DEG with high carrier densities and expected plasmonic behavior. A unique feature of the LAO/STO system is the ability to control the electron density with nanoscale precision. In addition, a method for sourcing and detecting broadband THz emission from LAO/STO nanojunctions has been recently demonstrated. Here we describe initial efforts to investigate the THz properties of graphene-complex oxide (GCO) heterostructures. We envision that the proposed graphene plasmonic devices in the GCO will help to lay the foundation for a host of powerful THz-IR technologies for signal processing, imaging, spectroscopy and chemical sensing.

We gratefully acknowledge support for this work from ONR (N00014-13-1-0806) and AFOSR (FA9550-12-1-0268).