Current filamentation in large $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8$ mesas observed by luminescent and scanning laser thermal microscopy

TIMOTHY BENSEMAN, YANG HAO, ALEX KOSHELEV, VITALII VLASKO-VLASOV, ULRICH WELP, WAI-KWONG KWOK, Materials Science Division, Argonne National Laboratory, BORIS GROSS, MATTHIAS LANGE, DIETER KOELLE, REINHOLD KLEINER, University of Tuebingen, Germany, KAZUO KADOWAKI, University of Tsukuba, Japan — Self-heating is a critical issue in stacked intrinsic Josephson junction devices designed for terahertz emission. Some theoretical models, as well as experimental evidence, suggest that self-heating may indeed be helpful for maximizing THz power output. Here we study the self-heating of a $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8$ mesa terahertz source via two techniques. We show that low-temperature scanning-laser microscopy measurements - a sensitive, but indirect probe of device temperature - agree well with direct temperature measurements obtained via a thermoluminescent imaging technique. Due to the semiconductor-like c-axis resistivity of $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8$, we find that at low temperatures device self-heating is highly non-uniform, displaying hysteretic nucleation of narrow hotspots with elevated current density. Also, the hotspot radius grows with increasing device temperature. These behaviors are consistent with theoretical predictions for a current filament forming in a material whose resistance falls with increasing temperature.

1This research was funded by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 and by the Deutsche Forschungsgemeinschaft (Project KL 930/13-1).

Timothy Benseman
Argonne Natl Lab

Date submitted: 15 Nov 2013

Electronic form version 1.4